from typing import Optional
import numpy as np
import genesis as gs
from .options import Options
############################ Top level: simulator and coupler ############################
"""
Simulator options specifies the global settings for the simulator and the coupler options specifies whether the coupling between pairs of solvers is enabled.
"""
[docs]
class SimOptions(Options):
"""
Options configuring the top-level simulator.
Note
----
1. `SimOptions` specifies the global settings for the simulator. Some parameters exist both in `SimOptions` and `SolverOptions`. In this case, if such parameters are given in `SolverOptions`, it will override the one specified in `SimOptions` for this specific solver. For example, if `dt` is only given in `SimOptions`, it will be shared by all the solvers, but it's also possible to let a solver run at a different temporal speed by setting its own `dt` to be a different value.
2. In differentiable mode, `substeps_local` must be divisible by `substeps`, as external command is input per `step`, but `substep`. If `requires_grad` is False, we can use arbitrary `substeps_local`.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. Defaults to 1e-2.
substeps : int, optional
Number of substeps per simulation step. Defaults to 1.
substeps_local : int, optional
Number of substeps stored in GPU memory. Defaults to None. This is used for differentiable mode.
gravity : tuple, optional
Gravity force in N/kg. Defaults to (0.0, 0.0, -9.81).
floor_height : float, optional
Height of the floor in meters. Defaults to 0.0.
requires_grad : bool, optional
Whether to enable differentiable mode. Defaults to False.
use_hydroelastic_contact : bool, optional
Whether to use hydroelastic contact. Defaults to False.
"""
dt: float = 1e-2
substeps: int = 1
substeps_local: Optional[int] = None # number of substeps stored in GPU memory
gravity: tuple = (0.0, 0.0, -9.81)
floor_height: float = 0.0
requires_grad: bool = False
# not set by user
_steps_local: Optional[int] = None
def __init__(self, **data):
super().__init__(**data)
if self.substeps_local is None:
if self.requires_grad:
self.substeps_local = self.substeps
else:
# use 1 to save gpu memory
self.substeps_local = 1
if self.requires_grad:
if self.substeps_local % self.substeps != 0:
gs.raise_exception("`substeps_local` must be divisible by `substeps` when `requires_grad` is True.")
else:
self._steps_local = int(self.substeps_local / self.substeps)
else:
self._steps_local = None
class BaseCouplerOptions(Options):
"""
Base class for all coupler options.
"""
pass
class LegacyCouplerOptions(BaseCouplerOptions):
"""
Options configuring the inter-solver coupling.
Parameters
----------
rigid_mpm : bool, optional
Whether to enable coupling between rigid and MPM solvers. Defaults to True.
rigid_sph : bool, optional
Whether to enable coupling between rigid and SPH solvers. Defaults to True.
rigid_pbd : bool, optional
Whether to enable coupling between rigid and PBD solvers. Defaults to True.
rigid_fem : bool, optional
Whether to enable coupling between rigid and FEM solvers. Defaults to True.
mpm_sph : bool, optional
Whether to enable coupling between MPM and SPH solvers. Defaults to True.
mpm_pbd : bool, optional
Whether to enable coupling between MPM and PBD solvers. Defaults to True.
fem_mpm : bool, optional
Whether to enable coupling between FEM and MPM solvers. Defaults to True.
fem_sph : bool, optional
Whether to enable coupling between FEM and SPH solvers. Defaults to True.
"""
rigid_mpm: bool = True
rigid_sph: bool = True
rigid_pbd: bool = True
rigid_fem: bool = True
mpm_sph: bool = True
mpm_pbd: bool = True
fem_mpm: bool = True
fem_sph: bool = True
class SAPCouplerOptions(BaseCouplerOptions):
"""
Options configuring the inter-solver coupling for the Semi-Analytic Primal (SAP) contact solver used in Drake.
Note
----
Paper reference: https://arxiv.org/abs/2110.10107
Drake reference: https://drake.mit.edu/release_notes/v1.5.0.html
Parameters
----------
n_sap_iterations : int, optional
Number of iterations for the SAP solver. Defaults to 5.
n_pcg_iterations : int, optional
Number of iterations for the Preconditioned Conjugate Gradient solver. Defaults to 100.
n_linesearch_iterations : int, optional
Max number of iterations for the line search solver. Defaults to 10.
sap_convergence_atol : float, optional
Absolute tolerance for SAP convergence. Defaults to 1e-6.
sap_convergence_rtol : float, optional
Relative tolerance for SAP convergence. Defaults to 1e-5.
sap_taud : float, optional
Dissipation time scale for SAP. Defaults to 0.1.
sap_beta : float, optional
Normal regularization parameter for SAP. Defaults to 1.0.
sap_sigma : float, optional
Friction regularization parameter for SAP. Defaults to 1e-3.
pcg_threshold : float, optional
Threshold for the Preconditioned Conjugate Gradient solver. Defaults to 1e-6.
linesearch_ftol : float, optional
Line search sufficient value close to zero for exact linesearch. Defaults to 1e-6.
linesearch_max_step_size : float, optional
Maximum step size for exact linesearch. Defaults to 1.5.
hydroelastic_stiffness : float, optional
Stiffness for hydroelastic contact. Defaults to 1e8.
point_contact_stiffness : float, optional
Stiffness for point contact. Defaults to 1e8.
fem_floor_contact_type : str, optional
Type of contact against the floor. Defaults to "tet". Can be "tet", "vert", or "none".
TET would be the default choice for most cases.
VERT would be preferable when the mesh is very coarse, such as a single cube or a tetrahedron.
enable_fem_self_tet_contact : bool, optional
Whether to use tetrahedral based self-contact. Defaults to True.
rigid_rigid_type : str, optional
Type of contact between rigid bodies. Defaults to "tet". Can be "tet", "vert", or "none".
rigid_floor_contact_type : str, optional
Type of contact against the floor. Defaults to "tet". Can be "tet", "vert", or "none".
Tet would be the default choice for most cases.
Vert would be preferable when the mesh is very coarse, such as a single cube or a tetrahedron.
enable_rigid_fem_contact : bool, optional
Whether to enable coupling between rigid and FEM solvers. Defaults to True.
"""
n_sap_iterations: int = 5
n_pcg_iterations: int = 100
n_linesearch_iterations: int = 10
sap_convergence_atol: float = 1e-6
sap_convergence_rtol: float = 1e-5
sap_taud: float = 0.1
sap_beta: float = 1.0
sap_sigma: float = 1e-3
pcg_threshold: float = 1e-6
linesearch_ftol: float = 1e-6
linesearch_max_step_size: float = 1.5
hydroelastic_stiffness: float = 1e8
point_contact_stiffness: float = 1e8
fem_floor_contact_type: str = "tet"
enable_fem_self_tet_contact: bool = True
rigid_floor_contact_type: str = "tet"
enable_rigid_fem_contact: bool = True
rigid_rigid_contact_type: str = "tet"
class IPCCouplerOptions(BaseCouplerOptions):
"""
Options configuring the Incremental Potential Contact (IPC) coupler.
Parameters
----------
dt : float, optional
Time step for IPC simulation. Defaults to 0.001.
gravity : tuple, optional
Gravity vector for IPC simulation. Defaults to (0.0, 0.0, -9.8).
contact_d_hat : float, optional
Contact distance threshold. Defaults to 0.001.
contact_friction_enable : bool, optional
Whether to enable friction in contact. Defaults to True.
contact_friction_mu : float, optional
Friction coefficient. Defaults to 0.5.
contact_resistance : float, optional
Contact resistance/stiffness. Defaults to 1e9.
newton_velocity_tol : float, optional
Velocity tolerance for Newton solver. Defaults to 0.001.
line_search_max_iter : int, optional
Maximum iterations for line search. Defaults to 30.
linear_system_tol_rate : float, optional
Tolerance rate for linear system solver. Defaults to 1e-4.
sanity_check_enable : bool, optional
Whether to enable sanity checks. Defaults to False.
ipc_constraint_strength : tuple, optional
Strength ratios for IPC soft transform constraint coupling. Tuple of (translation_strength, rotation_strength).
Higher values create stiffer coupling between Genesis rigid bodies and IPC ABD objects. Defaults to (100.0, 100.0).
two_way_coupling : bool, optional
Whether to enable bidirectional coupling between IPC and Genesis rigid bodies.
When True, forces from IPC ABD constraint are applied back to Genesis rigid bodies.
When False, only Genesis → IPC coupling is active (one-way). Defaults to True.
IPC_self_contact : bool, optional
Whether to enable contact detection between rigid bodies in IPC system (ABD-ABD collisions).
When False, only FEM-FEM and FEM-ABD collisions are detected. Defaults to False.
disable_genesis_ground_contact : bool, optional
Whether to disable ground contact in Genesis rigid solver when using IPC.
When True, ground collision is only handled by IPC system, not by Genesis rigid solver.
This can be useful to avoid double-counting ground contacts. Defaults to False.
disable_ipc_ground_contact : bool, optional
Whether to disable ground contact in IPC system.
When True, all objects in IPC (FEM, cloth, rigid ABD) will not collide with ground plane.
Defaults to False.
disable_ipc_logging : bool, optional
Whether to disable IPC library logging output. Defaults to True.
enable_ipc_gui : bool, optional
Whether to enable IPC GUI visualization using polyscope. Defaults to False.
"""
dt: float = 0.001
gravity: tuple = (0.0, 0.0, -9.8)
contact_d_hat: float = 0.001
contact_friction_enable: bool = True
contact_friction_mu: float = 0.5
contact_resistance: float = 1e9
newton_velocity_tol: float = 0.001
line_search_max_iter: int = 30
linear_system_tol_rate: float = 1e-4
sanity_check_enable: bool = False
ipc_constraint_strength: tuple = (100.0, 100.0)
two_way_coupling: bool = True
IPC_self_contact: bool = False
disable_genesis_ground_contact: bool = False
disable_ipc_ground_contact: bool = False
disable_ipc_logging: bool = True
enable_ipc_gui: bool = False
############################ Solvers inside simulator ############################
"""
Parameters in these solver-specific options will override SimOptions if available.
"""
[docs]
class RigidOptions(Options):
"""
Options configuring the RigidSolver.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
gravity : tuple, optional
Gravity force in N/kg. If none, it will inherit from `SimOptions`. Defaults to None.
enable_collision : bool, optional
Whether to enable collision detection. Defaults to True.
enable_joint_limit : bool, optional
Whether to enable joint limit. Defaults to True.
enable_self_collision : bool, optional
Whether to enable self collision within each entity. Defaults to True.
enable_adjacent_collision : bool, optional
Whether to enable collision between successive parent-child body pairs within each entity. Defaults to False.
disable_constraint: bool, optional
Whether to disable all constraints. Defaults to False.
max_collision_pairs : int, optional
Maximum number of collision pairs. Defaults to 100.
integrator : gs.integrator, optional
Integrator type. Current supported integrators are 'gs.integrator.Euler', 'gs.integrator.implicitfast' and
'gs.integrator.approximate_implicitfast'. 'Euler' and 'implicitfast' are consistent with their Mujoco
counterpart. 'approximate_implicitfast' is an even faster approximation of 'implicitfast', which avoid
computing the inverse mass matrix twice by considering the first order correction terms of the implicit
integration scheme systematically, including for computing the acceleration resulting from the constraints
and external forces. Although this approximation is wrong in theory, it works resonably well in practice.
Defaults to 'approximate_implicitfast'.
IK_max_targets : int, optional
Maximum number of IK targets. Increasing this doesn't affect IK solving speed, but will increase memory usage.
Defaults to 6.
constraint_solver : gs.constraint_solver, optional
Constraint solver type. Current supported constraint solvers are 'gs.constraint_solver.CG' (conjugate gradient)
and 'gs.constraint_solver.Newton' (Newton's method). Defaults to 'Newton'.
iterations : int, optional
Number of iterations for the constraint solver. Defaults to 50.
tolerance : float, optional
Tolerance for the constraint solver. Defaults to 1e-8.
ls_iterations : int, optional
Number of line search iterations for the constraint solver. Defaults to 50.
ls_tolerance : float, optional
Tolerance for the line search. Defaults to 1e-2.
noslip_iterations : int, optional
Number of iterations for the noslip solver. Defaults to 0 (disabled).
noslip is a post-processing step after the main solver to suppress slip/drift.
Recommended to set this value to 5 for manipulation tasks or when slip/drift is a big problem.
This option should only be enabled if necessary because it is experimental and will slow down the simulation.
noslip_tolerance : float, optional
Tolerance for the noslip solver. Defaults to 1e-6.
sparse_solve : bool, optional
Whether to exploit sparsity in the constraint system. Defaults to False.
contact_resolve_time : float, optional
Please note that this option will be deprecated in a future version. Use 'constraint_timeconst'
instead.
constraint_timeconst : float
Lower-bound of the default time to resolve the constraint (2*dt). The smaller the value, the more stiff the
constraint. This parameter is called 'timeconst' in Mujoco
(https://mujoco.readthedocs.io/en/latest/modeling.html#solver-parameters). Defaults to 0.01.
use_contact_island : bool, optional
Whether to use contact island to speed up contact resolving. Defaults to False.
use_hibernation : bool, optional
Whether to enable hibernation. Defaults to False.
hibernation_thresh_vel : float, optional
Velocity threshold for hibernation. Defaults to 1e-3.
hibernation_thresh_acc : float, optional
Acceleration threshold for hibernation. Defaults to 1e-2.
max_dynamic_constraints : int, optional
Maximum number of dynamic constraints (like suction cup). Defaults to 8.
use_gjk_collision: bool, optional
Whether to use GJK for collision detection instead of MPR. Defaults to True.
Warning
-------
Hibernation hasn't been robustly tested and will be fully supported soon.
"""
dt: Optional[float] = None
gravity: Optional[tuple] = None
enable_collision: bool = True
enable_joint_limit: bool = True
enable_self_collision: bool = True
enable_adjacent_collision: bool = False
disable_constraint: bool = False
max_collision_pairs: int = 300
integrator: gs.integrator = gs.integrator.approximate_implicitfast
IK_max_targets: int = 6
# batching info
batch_links_info: Optional[bool] = False
batch_joints_info: Optional[bool] = False
batch_dofs_info: Optional[bool] = False
# constraint solver
constraint_solver: gs.constraint_solver = gs.constraint_solver.Newton
iterations: int = 50
tolerance: float = 1e-8
ls_iterations: int = 50
ls_tolerance: float = 1e-2
noslip_iterations: int = 0
noslip_tolerance: float = 1e-6
sparse_solve: bool = False
contact_resolve_time: Optional[float] = None
constraint_timeconst: float = 0.01
use_contact_island: bool = False
box_box_detection: Optional[bool] = None
# hibernation threshold
use_hibernation: bool = False
hibernation_thresh_vel: float = 1e-3
hibernation_thresh_acc: float = 1e-2
# for dynamic properties
max_dynamic_constraints: int = 8
# Experimental options mainly intended for debug purpose and unit tests
enable_multi_contact: bool = True
enable_mujoco_compatibility: bool = False
# GJK collision detection
use_gjk_collision: bool = True
def __init__(self, **data):
super().__init__(**data)
[docs]
class AvatarOptions(Options):
"""
Options configuring the AvatarSolver. AvatarEntity is similar to RigidEntity, but without internal physics.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
enable_collision : float, optional
Whether to enable collision detection. Defaults to False.
enable_self_collision : float, optional
Whether to enable self collision within each entity. Defaults to False.
enable_adjacent_collision : bool, optional
Whether to enable collision between successive parent-child body pairs within each entity. Defaults to False.
max_collision_pairs : int, optional
Maximum number of collision pairs. Defaults to 100.
IK_max_targets : int, optional
Maximum number of IK targets. Increasing this doesn't affect IK solving speed, but will increase memory usage. Defaults to 6.
max_dynamic_constraints : int, optional
Maximum number of dynamic constraints (like suction cup). Defaults to 8.
"""
dt: Optional[float] = None
enable_collision: bool = False
enable_self_collision: bool = False
enable_adjacent_collision: bool = False
max_collision_pairs: int = 300
IK_max_targets: int = 6 # Increasing this doesn't affect IK solving speed, but will increase memory usage
# for dynamic properties
max_dynamic_constraints: int = 8
[docs]
class MPMOptions(Options):
"""
Options configuring the MPMSolver.
Note
----
MPM is a hybrid lagrangian-eulerian method for simulating soft materials. In the eulerian phase, it uses a grid representation. The `upper_bound` and `lower_bound` specify the simulation domain, but a safety padding will be added to the actual grid boundary. Therefore, the actual boundary could be slightly tighter than the specified one. Note that the size of the domain affects the performance of the simulation, hence you should set it as tight as possible.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
gravity : tuple, optional
Gravity force in N/kg. If none, it will inherit from `SimOptions`. Defaults to None.
particle_size : float, optional
Particle diameter in meters. If not given, we will compute `particle_size` based on `grid_density`, where `particle_size` will be linearly proportional to the grid cell size. A reference value is `particle_size = 0.01` for `grid_density = 64`. Defaults to None.
grid_density : float, optional
Number of grid cells per meter. Defaults to 64.
enable_CPIC : bool, optional
Whether to enable CPIC (Compatible Particle-in-Cell) to support coupling with thin objects. Defaults to False.
lower_bound : tuple, shape (3,), optional
Lower bound of the simulation domain. Defaults to (-1.0, -1.0, 0.0).
upper_bound : tuple, shape (3,), optional
Upper bound of the simulation domain. Defaults to (1.0, 1.0, 1.0).
use_sparse_grid : bool, optional
This option is deprecated.
leaf_block_size : int, optional
This option is deprecated.
"""
dt: Optional[float] = None
gravity: Optional[tuple] = None
particle_size: Optional[float] = None # in meters. Will be computed automatically if it's None.
grid_density: float = 64
enable_CPIC: bool = False
# These will later be converted to discrete grid bound. The actual grid boundary could be slightly tighter.
lower_bound: tuple = (-1.0, -1.0, 0.0)
upper_bound: tuple = (1.0, 1.0, 1.0)
# Deprecated sparse computation parameter.
use_sparse_grid: bool = False
leaf_block_size: int = 8
def __init__(self, **data):
super().__init__(**data)
if not np.all(np.asarray(self.upper_bound) > np.asarray(self.lower_bound)):
gs.raise_exception("Invalid pair of upper_bound and lower_bound.")
if self.particle_size is None:
self.particle_size = 0.01 * 64.0 / self.grid_density
[docs]
class SPHOptions(Options):
"""
Options configuring the SPHSolver.
Note
----
If spatial hashing parameters are not given, we will compute them automatically this way: For `hash_grid_cell_size`, we will set it to be the `support_radius`, which is essentially 2 * `particle_size`. For `hash_grid_res`, if a small bound is given, it's used for the hash grid; otherwise, we use a default value of a 150^3 cube. Any grid bigger than that will results in too many cells hence not ideal.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
gravity : tuple, optional
Gravity force in N/kg. If none, it will inherit from `SimOptions`. Defaults to None.
particle_size : float, optional
Particle diameter in meters. Defaults to 0.02.
pressure_solver : str, optional
Pressure solver type. Current supported pressure solvers are 'WCSPH' and 'DFSPH'. Defaults to 'WCSPH'.
lower_bound : tuple, shape (3,), optional
Lower bound of the simulation domain. Defaults to (-100.0, -100.0, 0.0).
upper_bound : tuple, shape (3,), optional
Upper bound of the simulation domain. Defaults to (100.0, 100.0, 100.0).
hash_grid_res : tuple, optional
Size of the spatially-repetitive spatial hashing grid in meters. If none, it will be computed automatically. Defaults to None.
hash_grid_cell_size : float, optional
Size of the lattic cell of the spatial hashing grid in meters. This should be at least 2 * `particle_size`. If none, it will be computed automatically. Defaults to None.
max_divergence_error : float, optional
Maximum divergence error for DFSPH. Defaults to 0.1.
max_density_error_percent : float, optional
Maximum density error *percent* for DFSPH, so 0.1 means 0.1%. Defaults to 0.05.
max_divergence_solver_iterations : int, optional
Maximum number of iterations for the divergence solver. Defaults to 100.
max_density_solver_iterations : int, optional
Maximum number of iterations for the density solver. Defaults to 100.
"""
dt: Optional[float] = None
gravity: Optional[tuple] = None
particle_size: float = 0.02
pressure_solver: str = "WCSPH" # 'WCSPH' or 'DFSPH'
lower_bound: tuple = (-100.0, -100.0, 0.0)
upper_bound: tuple = (100.0, 100.0, 100.0)
# spatial hashing
hash_grid_res: Optional[tuple] = None # size of the spatially-repetitive hash grid in meters
hash_grid_cell_size: Optional[float] = None # size of the cubic cell in meters
# DFSPH parameters
max_divergence_error: float = 0.1
max_density_error_percent: float = 0.05 # This is percent
max_divergence_solver_iterations: int = 100
max_density_solver_iterations: int = 100
def __init__(self, **data):
super().__init__(**data)
if not np.all(np.array(self.upper_bound) > np.array(self.lower_bound)):
gs.raise_exception("Invalid pair of upper_bound and lower_bound.")
self._support_radius = 2 * self.particle_size
if self.hash_grid_cell_size is None:
self.hash_grid_cell_size = self._support_radius
else:
if self.hash_grid_cell_size < self._support_radius:
gs.raise_exception("`hash_grid_cell_size` should not be smaller than 2 * `particle_size`.")
if self.hash_grid_res is None:
max_hash_grid_res = np.ceil(
(np.array(self.upper_bound) - np.array(self.lower_bound)) / self.hash_grid_cell_size
).astype(gs.np_int)
default_hash_grid_res = np.array([150, 150, 150], dtype=gs.np_int)
self._hash_grid_res = np.minimum(max_hash_grid_res, default_hash_grid_res)
else:
self._hash_grid_res = np.ceil(np.array(self.hash_grid_res) / self.hash_grid_cell_size).astype(gs.np_int)
# check pressure solver
pressure_solver_available = ["WCSPH", "DFSPH"]
if self.pressure_solver not in pressure_solver_available:
gs.raise_exception(
f"Pressure solver {self.pressure_solver} not implemented. Please select among {pressure_solver_available}."
)
[docs]
class PBDOptions(Options):
"""
Options configuring the PBDSolver.
Note
----
If spatial hashing parameters are not given, we will compute them automatically this way: For `hash_grid_cell_size`, we will set it to be 1.25 * `particle_size`. For `hash_grid_res`, if a small bound is given, it's used for the hash grid; otherwise, we use a default value of a 150^3 cube. Any grid bigger than that will results in too many cells hence not ideal.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
gravity : tuple, optional
Gravity force in N/kg. If none, it will inherit from `SimOptions`. Defaults to None.
max_stretch_solver_iterations : int, optional
Maximum number of iterations for the solving stretch constraints. Defaults to 4.
max_bending_solver_iterations : int, optional
Maximum number of iterations for the solving bending constraints. Defaults to 1.
max_volume_solver_iterations : int, optional
Maximum number of iterations for the solving volume constraints. Defaults to 1.
max_density_solver_iterations : int, optional
Maximum number of iterations for the solving density constraints. Defaults to 1.
max_viscosity_solver_iterations : int, optional
Maximum number of iterations for the solving viscosity constraints. Defaults to 1.
particle_size : float, optional
Particle diameter in meters. Defaults to 1e-2.
hash_grid_res : tuple, optional
Size of the spatially-repetitive spatial hashing grid in meters. If none, it will be computed automatically. Defaults to None.
hash_grid_cell_size : float, optional
Size of the lattic cell of the spatial hashing grid in meters. This should be at least 1.25 * `particle_size`. If none, it will be computed automatically. Defaults to None.
lower_bound : tuple, shape (3,), optional
Lower bound of the simulation domain. Defaults to (-100.0, -100.0, 0.0).
upper_bound : tuple, shape (3,), optional
Upper bound of the simulation domain. Defaults to (100.0, 100.0, 100.0).
"""
dt: Optional[float] = None
gravity: Optional[tuple] = None
# constraints solving iterations
max_stretch_solver_iterations: int = 4
max_bending_solver_iterations: int = 1
max_volume_solver_iterations: int = 1
max_density_solver_iterations: int = 1
max_viscosity_solver_iterations: int = 1
# self collision
particle_size: Optional[float] = 1e-2
# spatial hashing
hash_grid_res: Optional[tuple] = None # size of the spatially-repetitive hash grid in meters
hash_grid_cell_size: Optional[float] = None # size of the cubic cell in meters
lower_bound: tuple = (-100.0, -100.0, 0.0)
upper_bound: tuple = (100.0, 100.0, 100.0)
def __init__(self, **data):
super().__init__(**data)
if not np.all(np.array(self.upper_bound) > np.array(self.lower_bound)):
gs.raise_exception("Invalid pair of upper_bound and lower_bound.")
# NOTE: 1.25 is a safety factor, as inside one single substep, multiple substages can change the position of the particles but we only do spatial hashing once.
# Therefore, the grid cell needs to be a bit bigger so that neighbours are not missed.
if self.hash_grid_cell_size is None:
self.hash_grid_cell_size = 1.25 * self.particle_size
else:
if self.hash_grid_cell_size < 1.25 * self.particle_size:
gs.raise_exception("`hash_grid_cell_size` should not be smaller than 1.25 * `particle_size`.")
if self.hash_grid_res is None:
# compute _hash_grid_res smartly
# if a small bound is given, it's used for the hash grid
# Otherwise, we use a default value of a 150^3 cube. Any grid bigger than that will results in too many cells hence not ideal.
max_hash_grid_res = np.ceil(
(np.array(self.upper_bound) - np.array(self.lower_bound)) / self.hash_grid_cell_size
).astype(gs.np_int)
default_hash_grid_res = np.array([150, 150, 150], dtype=gs.np_int)
self._hash_grid_res = np.minimum(max_hash_grid_res, default_hash_grid_res)
else:
self._hash_grid_res = np.ceil(np.array(self.hash_grid_res) / self.hash_grid_cell_size).astype(gs.np_int)
[docs]
class FEMOptions(Options):
"""
Options configuring the FEMSolver.
Note
----
- Damping coefficients are used to control the damping effect in the simulation.
They are used in the Rayleigh Damping model, which is a common damping model in FEM simulations.
Reference: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_modeling.05.083.html
- TODO Move it to material parameters in the future instead of solver options.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
gravity : tuple, optional
Gravity force in N/kg. If none, it will inherit from `SimOptions`. Defaults to None.
damping : float, optional
Damping factor. Defaults to 0.0.
floor_height : float, optional
Height of the floor in meters. If none, it will inherit from `SimOptions`. Defaults to None.
use_implicit_solver : bool, optional
Whether to use the implicit solver. Defaults to False.
Implicit solver is a more stable solver for FEM. It can be used with a large time step.
n_newton_iterations : int, optional
Maximum number of Newton iterations. Defaults to 1. Only used when `use_implicit_solver` is True.
n_pcg_iterations : int, optional
Maximum number of PCG iterations. Defaults to 500. Only used when `use_implicit_solver` is True.
n_linesearch_iterations : int, optional
Maximum number of line search iterations. Defaults to 0. Only used when `use_implicit_solver` is True.
newton_dx_threshold : float, optional
Threshold for the Newton solver. Defaults to 1e-6. Only used when `use_implicit_solver` is True.
pcg_threshold : float, optional
Threshold for the PCG solver. Defaults to 1e-6. Only used when `use_implicit_solver` is True.
linesearch_c : float, optional
Line search sufficient decrease parameter. Defaults to 1e-4. Only used when `use_implicit_solver` is True.
linesearch_tau : float, optional
Line search step size reduction factor. Defaults to 0.5. Only used when `use_implicit_solver` is True.
damping_alpha : float, optional
Rayleigh Damping factor for the implicit solver. Defaults to 0.5. Only used when `use_implicit_solver` is True.
damping_beta : float, optional
Rayleigh Damping factor for the implicit solver. Defaults to 5e-4. Only used when `use_implicit_solver` is True.
enable_vertex_constraints : bool, optional
Whether to enable vertex constraints. Defaults to False.
"""
dt: Optional[float] = None
gravity: Optional[tuple] = None
damping: Optional[float] = 0.0
floor_height: float = None
use_implicit_solver: bool = False
n_newton_iterations: int = 1
n_pcg_iterations: int = 500
n_linesearch_iterations: int = 0
newton_dx_threshold: float = 1e-6
pcg_threshold: float = 1e-6
linesearch_c: float = 1e-4
linesearch_tau: float = 0.5
damping_alpha: float = 0.5
damping_beta: float = 5e-4
enable_vertex_constraints: bool = False
[docs]
class SFOptions(Options):
"""
Options configuring the SFSolver.
Parameters
----------
dt : float, optional
Time duration for each simulation step in seconds. If none, it will inherit from `SimOptions`. Defaults to None.
"""
dt: Optional[float] = None
res: Optional[int] = 128
solver_iters: Optional[int] = 500
decay: Optional[float] = 0.99
T_low: Optional[float] = 1.0
T_high: Optional[float] = 0.0
inlet_pos: Optional[tuple[int, int, int]] = (0.6, 0.0, 0.1)
inlet_vel: Optional[tuple[int, int, int]] = (0, 0, 1)
inlet_quat: Optional[tuple[int, int, int, int]] = (1, 0, 0, 0)
inlet_s: Optional[float] = 400.0