import inspect
import math
import os
import time
from functools import cached_property
import numpy as np
import torch
import genesis as gs
import genesis.utils.geom as gu
from genesis.constants import IMAGE_TYPE
from genesis.repr_base import RBC
from genesis.utils.misc import tensor_to_array
from genesis.utils.image_exporter import as_grayscale_image
[docs]
class Camera(RBC):
"""
A camera which can be used to render RGB, depth, and segmentation images.
Supports either rasterizer or raytracer for rendering, specified by `scene.renderer`.
Parameters
----------
visualizer : genesis.Visualizer
The visualizer object that the camera is associated with.
idx : int
The index of the camera.
model : str
Specifies the camera model. Options are 'pinhole' or 'thinlens'.
res : tuple of int, shape (2,)
The resolution of the camera, specified as a tuple (width, height).
pos : tuple of float, shape (3,)
The position of the camera in the scene, specified as (x, y, z).
lookat : tuple of float, shape (3,)
The point in the scene that the camera is looking at, specified as (x, y, z).
up : tuple of float, shape (3,)
The up vector of the camera, defining its orientation, specified as (x, y, z).
fov : float
The vertical field of view of the camera in degrees.
aperture : float
The aperture size of the camera, controlling depth of field.
focus_dist : float | None
The focus distance of the camera. If None, it will be auto-computed using `pos` and `lookat`.
GUI : bool
Whether to display the camera's rendered image in a separate GUI window.
spp : int, optional
Samples per pixel. Only available when using the RayTracer renderer. Defaults to 256.
denoise : bool
Whether to denoise the camera's rendered image. Only available when using the RayTracer renderer.
Defaults to True. If OptiX denoiser is not available on your platform, consider enabling the OIDN denoiser
option when building RayTracer.
near : float
Distance from camera center to near plane in meters.
Only available when using rasterizer in Rasterizer and BatchRender renderer. Defaults to 0.05.
far : float
Distance from camera center to far plane in meters.
Only available when using rasterizer in Rasterizer and BatchRender renderer. Defaults to 100.0.
transform : np.ndarray, shape (4, 4), optional
The transform matrix of the camera.
env_idx : int, optional
The index of the environment to track the camera.
debug : bool, optional
Whether to use the debug camera. It enables to create cameras that can used to monitor / debug the
simulation without being part of the "sensors". Their output is rendered by the usual simple Rasterizer
systematically, no matter if BatchRayTracer is enabled. This way, it is possible to record the
simulation with arbitrary resolution and camera pose, without interfering with what robots can perceive
from their environment. Defaults to False.
"""
def __init__(
self,
visualizer,
idx=0,
model="pinhole", # pinhole or thinlens
res=(320, 320),
pos=(0.5, 2.5, 3.5),
lookat=(0.5, 0.5, 0.5),
up=(0.0, 0.0, 1.0),
fov=30,
aperture=2.8,
focus_dist=None,
GUI=False,
spp=256,
denoise=True,
near=0.05,
far=100.0,
transform=None,
env_idx=None,
debug=False,
):
self._idx = idx
self._uid = gs.UID()
self._model = model
self._res = res
self._fov = fov
self._aperture = aperture
self._focus_dist = focus_dist
self._GUI = GUI
self._spp = spp
self._denoise = denoise
self._near = near
self._far = far
self._initial_pos = torch.as_tensor(pos, dtype=gs.tc_float, device=gs.device)
self._initial_lookat = torch.as_tensor(lookat, dtype=gs.tc_float, device=gs.device)
self._initial_up = torch.as_tensor(up, dtype=gs.tc_float, device=gs.device)
self._initial_transform = None
if transform is not None:
self._initial_transform = torch.as_tensor(transform, dtype=gs.tc_float, device=gs.device)
self._aspect_ratio = self._res[0] / self._res[1] # width / height
self._visualizer = visualizer
self._debug = debug
self._is_built = False
self._rasterizer = None
self._raytracer = None
self._batch_renderer = None
self._env_idx = int(env_idx) if env_idx is not None else None
self._envs_offset = None
self._in_recording = False
self._recorded_t_prev = -1
self._recorded_imgs = []
self._attached_link = None
self._attached_offset_T = None
self._followed_entity = None
self._follow_pos_rel = None
self._follow_fixed_axis = None
self._follow_smoothing = None
self._follow_fix_orientation = None
if self._model not in ["pinhole", "thinlens"]:
gs.raise_exception(f"Invalid camera model: {self._model}")
if self._focus_dist is None:
self._focus_dist = np.linalg.norm(np.asarray(lookat) - np.asarray(pos))
[docs]
def build(self):
self._rasterizer = self._visualizer.rasterizer
if not self._debug:
self._raytracer = self._visualizer.raytracer
self._batch_renderer = self._visualizer.batch_renderer
if self._batch_renderer is not None:
self._is_batched = True
if self._env_idx is not None:
gs.raise_exception("Binding a camera to one specific environment index not supported by BatchRender.")
else:
self._rasterizer.add_camera(self)
if self._raytracer is not None:
self._raytracer.add_camera(self)
self._is_batched = False
else:
self._is_batched = self._visualizer.scene.n_envs > 0 and self._visualizer._context.env_separate_rigid
if self._is_batched:
gs.logger.warning(
"Batched rendering via 'VisOptions.env_separate_rigid=True' is only partially supported by "
"Rasterizer for now. The same camera transform will be used for all the environments."
)
if self._env_idx is None:
self._env_idx = int(self._visualizer._context.rendered_envs_idx[0])
if self._visualizer.scene.n_envs > 0:
gs.logger.info(
"Raytracer and Rasterizer requires binding to the camera with a specific environment index. "
"Defaulting to 'rendered_envs_idx[0]'. Please specify 'env_idx' if necessary."
)
if self._env_idx not in self._visualizer._context.rendered_envs_idx:
gs.raise_exception("Environment index bound to the camera not in 'VisOptions.rendered_envs_idx'.")
if self._is_batched and self._env_idx is None:
batch_size = (len(self._visualizer._context.rendered_envs_idx),)
else:
batch_size = ()
self._pos = torch.empty((*batch_size, 3), dtype=gs.tc_float, device=gs.device)
self._lookat = torch.empty((*batch_size, 3), dtype=gs.tc_float, device=gs.device)
self._up = torch.empty((*batch_size, 3), dtype=gs.tc_float, device=gs.device)
self._transform = torch.empty((*batch_size, 4, 4), dtype=gs.tc_float, device=gs.device)
self._quat = torch.empty((*batch_size, 4), dtype=gs.tc_float, device=gs.device)
self._envs_offset = torch.as_tensor(
self._visualizer._scene.envs_offset[() if self._env_idx is None else self._env_idx],
dtype=gs.tc_float,
device=gs.device,
)
# Must consider the building process done before setting initial pose, otherwise it will fail
self._is_built = True
self.set_pose(
transform=self._initial_transform,
pos=self._initial_pos,
lookat=self._initial_lookat,
up=self._initial_up,
)
# FIXME: For some reason, it is necessary to update the camera twice...
if self._raytracer is not None:
self._raytracer.update_camera(self)
[docs]
def attach(self, rigid_link, offset_T):
"""
Attach the camera to a rigid link in the scene.
Once attached, the camera's position and orientation can be updated relative to the attached link using
`move_to_attach()`. This is useful for mounting the camera to dynamic entities like robots or articulated
objects.
Parameters
----------
rigid_link : genesis.RigidLink
The rigid link to which the camera should be attached.
offset_T : np.ndarray, shape (4, 4)
The transformation matrix specifying the camera's pose relative to the rigid link.
"""
if self._visualizer._context.env_separate_rigid:
gs.raise_exception("This method is not supported by Rasterizer when 'VisOptions.env_separate_rigid=True'.")
if self._followed_entity is not None:
gs.raise_exception("Impossible to attach a camera that is already following an entity.")
self._attached_link = rigid_link
self._attached_offset_T = torch.as_tensor(offset_T, dtype=gs.tc_float, device=gs.device)
[docs]
def detach(self):
"""
Detach the camera from the currently attached rigid link.
After detachment, the camera will stop following the motion of the rigid link and maintain its current world
pose. Calling this method has no effect if the camera is not currently attached.
"""
self._attached_link = None
self._attached_offset_T = None
[docs]
def move_to_attach(self):
"""
Move the camera to follow the currently attached rigid link.
This method updates the camera's pose using the transform of the attached rigid link combined with the
specified offset. It should only be called after `attach()` has been used.
Raises
------
Exception
If the camera has not been attached to a rigid link.
"""
if self._attached_link is None:
gs.raise_exception("Camera not attached to any rigid link.")
link_pos = self._attached_link.get_pos(self._env_idx)
link_quat = self._attached_link.get_quat(self._env_idx)
if self._env_idx is not None and self._visualizer.scene.n_envs > 0:
link_pos, link_quat = link_pos[0], link_quat[0]
link_T = gu.trans_quat_to_T(link_pos, link_quat)
transform = torch.matmul(link_T, self._attached_offset_T)
self.set_pose(transform=transform)
[docs]
def follow_entity(self, entity, fixed_axis=(None, None, None), smoothing=None, fix_orientation=False):
"""
Set the camera to follow a specified rigid entity.
Parameters
----------
entity : genesis.Entity
The entity to follow.
fixed_axis : (float, float, float), optional
The fixed axis for the camera's movement. For each axis, if None, the camera will move freely. If a float,
the viewer will be fixed on at that value. For example, [None, None, None] will allow the camera to move
freely while following, [None, None, 0.5] will fix the viewer's z-axis at 0.5.
smoothing : float, optional
The smoothing factor for the camera's movement. If None, no smoothing will be applied.
fix_orientation : bool, optional
If True, the camera will maintain its orientation relative to the world. If False, the camera will look at
the base link of the entity.
"""
if self._visualizer._context.env_separate_rigid:
gs.raise_exception("This method is not supported by Rasterizer when 'VisOptions.env_separate_rigid=True'.")
if self._attached_link is not None:
gs.raise_exception("Impossible to following an entity with a camera that is already attached.")
if self._is_built:
env_idx = self._env_idx if self._is_batched and self._env_idx is not None else ()
pos_rel = self._pos[env_idx] - entity.get_pos(self._env_idx, unsafe=True)
if self._env_idx is not None:
pos_rel = pos_rel.squeeze(0)
else:
pos_rel = self._initial_pos - torch.tensor(entity.base_link.pos, dtype=gs.tc_float, device=gs.device)
if self._env_idx is None:
if self._visualizer._context.rendered_envs_idx is not None:
pos_rel = pos_rel.expand((len(self._visualizer._context.rendered_envs_idx), 3))
else:
# Falling back to adding batch dimension to allow broadcasting.
# Note that it is not possible to expand / tile because the batch size is unknown before build.
pos_rel = pos_rel.unsqueeze(0)
self._followed_entity = entity
self._follow_pos_rel = pos_rel
self._follow_fixed_axis = fixed_axis
self._follow_smoothing = smoothing
self._follow_fix_orientation = fix_orientation
[docs]
def unfollow_entity(self):
"""
Stop following any rigid entity with the camera.
Calling this method has no effect if the camera is not currently following any entity.
"""
self._followed_entity = None
self._follow_pos_rel = None
self._follow_fixed_axis = None
self._follow_smoothing = None
self._follow_fix_orientation = None
[docs]
@gs.assert_built
def update_following(self):
"""
Update the camera position to follow the specified rigid entity.
"""
if self._followed_entity is None:
gs.raise_exception("Camera not following any rigid entity.")
# Keep the camera orientation fixed by overriding the lookat point if requested
env_idx = self._env_idx if self._is_batched and self._env_idx is not None else ()
if self._follow_fix_orientation:
camera_transform = self._transform[env_idx].clone()
camera_lookat = None
camera_pos = camera_transform[..., :3, 3]
else:
camera_lookat = self._lookat[env_idx].clone()
camera_pos = self._pos[env_idx].clone()
# Query entity and relative camera positions
entity_pos = self._followed_entity.get_pos(self._env_idx, unsafe=True)
follow_pos_rel = self._follow_pos_rel
if not self._is_batched:
follow_pos_rel = follow_pos_rel.squeeze(0)
# Smooth camera movement with a low-pass filter, in particular Exponential Moving Average (EMA) if requested
camera_pos -= follow_pos_rel
if self._follow_smoothing is not None:
camera_pos[:] = self._follow_smoothing * camera_pos + (1.0 - self._follow_smoothing) * entity_pos
if not self._follow_fix_orientation:
camera_lookat[:] = self._follow_smoothing * camera_lookat + (1.0 - self._follow_smoothing) * entity_pos
else:
camera_pos[:] = entity_pos
camera_lookat[:] = entity_pos
camera_pos += follow_pos_rel
# Fix the camera's position along the specified axis if requested
for i_a, fixed_axis in enumerate(self._follow_fixed_axis):
if fixed_axis is not None:
camera_pos[..., i_a] = fixed_axis
# Update the pose of all camera at once
if self._follow_fix_orientation:
self.set_pose(transform=camera_transform)
else:
self.set_pose(pos=camera_pos, lookat=camera_lookat)
@gs.assert_built
def _batch_render(
self,
rgb=True,
depth=False,
segmentation=False,
normal=False,
antialiasing=True,
force_render=False,
):
"""
Render the camera view with batch renderer.
"""
assert self._visualizer._batch_renderer is not None
# Render all cameras at once no matter what
buffers = list(self._batch_renderer.render(rgb, depth, segmentation, normal, antialiasing, force_render))
# Only return current camera data
for i, buffer in enumerate(buffers):
if buffer is not None:
buffers[i] = buffer[self.idx]
return tuple(buffers)
[docs]
@gs.assert_built
def render(
self,
rgb=True,
depth=False,
segmentation=False,
colorize_seg=False,
normal=False,
antialiasing=False,
force_render=False,
):
"""
Render the camera view.
Note
----
The segmentation mask can be colorized, and if not colorized, it will store an object index in each pixel based
on the segmentation level specified in `VisOptions.segmentation_level`.
For example, if `segmentation_level='link'`, the segmentation mask will store `link_idx`, which can then be
used to retrieve the actual link objects using `scene.rigid_solver.links[link_idx]`.
Note
----
If `env_separate_rigid` in `VisOptions` is set to True, each component will return a stack of images, with the
number of images equal to `len(rendered_envs_idx)`.
Parameters
----------
rgb : bool, optional
Whether to render RGB image(s).
depth : bool, optional
Whether to render depth image(s).
segmentation : bool, optional
Whether to render the segmentation mask(s).
colorize_seg : bool, optional
If True, the segmentation mask will be colorized.
normal : bool, optional
Whether to render the surface normal.
antialiasing : bool, optional
Whether to apply anti-aliasing. Only supported by 'BatchRenderer' for now.
force_render : bool, optional
Whether to force rendering even if the scene has not changed.
Returns
-------
rgb_arr : np.ndarray
The rendered RGB image(s).
depth_arr : np.ndarray
The rendered depth image(s).
seg_arr : np.ndarray
The rendered segmentation mask(s).
normal_arr : np.ndarray
The rendered surface normal(s).
"""
# Enforce RGB rendering if recording is enabled and the current frame is missing
is_recording = self._in_recording and self._recorded_t_prev != self._visualizer.scene._t
rgb_ = rgb or is_recording
# Render the current frame
rgb_arr, depth_arr, seg_arr, seg_color_arr, seg_idxc_arr, normal_arr = None, None, None, None, None, None
if self._batch_renderer is not None:
rgb_arr, depth_arr, seg_idxc_arr, normal_arr = self._batch_render(
rgb_, depth, segmentation, normal, antialiasing, force_render
)
elif self._raytracer is not None:
if rgb_:
self._raytracer.update_scene(force_render)
rgb_arr = self._raytracer.render_camera(self)
if depth or segmentation or normal:
self._rasterizer.update_scene(force_render)
_, depth_arr, seg_idxc_arr, normal_arr = self._rasterizer.render_camera(
self, False, depth, segmentation, normal=normal
)
else:
self._rasterizer.update_scene(force_render)
rgb_arr, depth_arr, seg_idxc_arr, normal_arr = self._rasterizer.render_camera(
self, rgb_, depth, segmentation, normal=normal
)
# Colorize the segmentation map is necessary
if seg_idxc_arr is not None:
if colorize_seg or (self._GUI and self._visualizer.has_display):
seg_color_arr = self._visualizer.colorize_seg_idxc_arr(seg_idxc_arr)
seg_arr = seg_color_arr if colorize_seg else seg_idxc_arr
# Display images if requested and supported
if self._GUI and self._visualizer.has_display:
# Postpone import of OpenCV at runtime to reduce hard system dependencies
import cv2
title = f"Genesis - Camera {self._idx}"
if self._debug:
title += " (debug)"
if self._is_batched:
title += f" - Environment {self._visualizer._context.rendered_envs_idx[0]}"
for img_type, (flag, buffer) in enumerate(
((rgb, rgb_arr), (depth, depth_arr), (segmentation, seg_color_arr), (normal, normal_arr))
):
if flag:
if self._is_batched:
buffer = buffer[0]
buffer = tensor_to_array(buffer)
if img_type == IMAGE_TYPE.DEPTH:
buffer = as_grayscale_image(buffer, black_to_white=False)
else:
buffer = np.flip(buffer, axis=-1)
cv2.imshow(f"{title} [{IMAGE_TYPE(img_type)}]", buffer)
cv2.waitKey(1)
# Store the current frame for video recording
if is_recording:
if not (self._recorded_t_prev < 0 or self._recorded_t_prev == self._visualizer.scene._t - 1):
gs.raise_exception(
"Missing frames in recording. Please call 'camera.render()' after 'every scene.step()'."
)
self._recorded_t_prev == self._visualizer.scene._t
self._recorded_imgs.append(tensor_to_array(rgb_arr))
return rgb_arr if rgb else None, depth_arr, seg_arr, normal_arr
[docs]
def distance_center_to_plane(self, center_dis):
width, height = self.res
fx = fy = self.f
cx = self.cx
cy = self.cy
if isinstance(center_dis, np.ndarray):
v, u = np.meshgrid(np.arange(height, dtype=np.int32), np.arange(width, dtype=np.int32), indexing="ij")
xd = (u + 0.5 - cx) / fx
yd = (v + 0.5 - cy) / fy
scale_inv = 1.0 / np.sqrt(xd**2 + yd**2 + 1.0)
else: # torch.Tensor
v, u = torch.meshgrid(
torch.arange(height, dtype=torch.int32, device=gs.device),
torch.arange(width, dtype=torch.int32, device=gs.device),
indexing="ij",
)
xd = (u + 0.5 - cx) / fx
yd = (v + 0.5 - cy) / fy
scale_inv = torch.rsqrt(xd**2 + yd**2 + 1.0)
return center_dis * scale_inv
[docs]
@gs.assert_built
def render_pointcloud(self, world_frame=True):
"""
Render a partial point cloud from the camera view.
Parameters
----------
world_frame : bool, optional
Whether the point cloud is on camera frame or world frame.
Returns
-------
pc : np.ndarray
Numpy array of shape (res[0], res[1], 3) or (N, res[0], res[1], 3).
Represents the point cloud in each pixel.
mask_arr : np.ndarray
The valid depth mask. boolean array of same shape as depth_arr
"""
# Compute the (denormalized) depth map
if self._batch_renderer is not None:
_, depth_arr, _, _ = self._batch_render(rgb=False, depth=True, segmentation=False, normal=False)
# FIXME: Avoid converting to numpy
depth_arr = tensor_to_array(depth_arr)
else:
self._rasterizer.update_scene(force_render=False)
_, depth_arr, _, _ = self._rasterizer.render_camera(
self, rgb=False, depth=True, segmentation=False, normal=False
)
# Convert OpenGL projection matrix to camera intrinsics
width, height = self.res
fx = fy = self.f
cx = self.cx
cy = self.cy
# Mask out invalid depth
mask = (self.near < depth_arr) & (depth_arr < self.far * (1.0 - 1e-3))
# Compute normalized pixel coordinates
v, u = np.meshgrid(np.arange(height, dtype=np.int32), np.arange(width, dtype=np.int32), indexing="ij")
u = u.reshape((-1,))
v = v.reshape((-1,))
# Convert to world coordinates
depth_grid = depth_arr[..., v, u]
world_x = depth_grid * (u + 0.5 - cx) / fx
world_y = depth_grid * (v + 0.5 - cy) / fy
world_z = depth_grid
point_cloud = np.stack((world_x, world_y, world_z, np.ones_like(world_z)), axis=-1)
if world_frame:
T_OPENGL_TO_OPENCV = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=np.float32)
cam_pose = self.transform @ T_OPENGL_TO_OPENCV
point_cloud = point_cloud @ cam_pose.swapaxes(-1, -2)
point_cloud = point_cloud[..., :3].reshape((*depth_arr.shape, 3))
return point_cloud, mask
[docs]
def set_pose(self, transform=None, pos=None, lookat=None, up=None, envs_idx=None):
"""
Set the pose of the camera.
Note that `transform` has a higher priority than `pos`, `lookat`, and `up`.
If `transform` is provided, the camera pose will be set based on the transform matrix.
Otherwise, the camera pose will be set based on `pos`, `lookat`, and `up`.
Parameters
----------
transform : np.ndarray, shape (4, 4) or (N, 4, 4), optional
The transform matrix of the camera.
pos : array-like, shape (3,) or (N, 3), optional
The position of the camera.
lookat : array-like, shape (3,) or (N, 3), optional
The lookat point of the camera.
up : array-like, shape (3,) or (N, 3), optional
The up vector of the camera.
envs_idx : array of indices in integers, optional
The environment indices for which to update the pose. If not provided, the camera pose will be set for the
specific environment bound to the camera if any, all the environments otherwise.
"""
# Early return if nothing to do
if pos is None and lookat is None and up is None and transform is None:
return
# Sanitize 'envs_idx' input argument
if envs_idx is not None:
if not self._is_batched:
gs.raise_exception("Camera does not support batching. Impossible to specify 'envs_idx'.")
if self._env_idx is not None:
gs.raise_exception("Camera already bound to a specific environment. Impossible to specify 'envs_idx'.")
if self._is_batched:
if envs_idx is None:
envs_idx = (self._env_idx,) if self._env_idx is not None else ()
n_envs = len(self._visualizer._context.rendered_envs_idx)
else:
envs_idx = self._visualizer._scene._sanitize_envs_idx(envs_idx)
if set(envs_idx).issubset(self._visualizer._context.rendered_envs_idx):
gs.raise_exception("Environment index not in 'VisOptions.rendered_envs_idx'.")
n_envs = len(envs_idx)
else:
envs_idx = ()
# Sanitize 'pos', 'lookat', 'up', 'transform' input arguments
if pos is not None:
pos = torch.as_tensor(pos, dtype=gs.tc_float, device=gs.device)
if pos.ndim > (1 + self._is_batched) or pos.shape[-1] != 3:
gs.raise_exception(f"Pos shape {pos.shape} does not match (N, 3)")
if self._is_batched and pos.ndim == 1:
pos = pos.expand((n_envs, 3))
if lookat is not None:
lookat = torch.as_tensor(lookat, dtype=gs.tc_float, device=gs.device)
if lookat.ndim > (1 + self._is_batched) or lookat.shape[-1] != 3:
gs.raise_exception(f"Lookat shape {lookat.shape} does not match (N, 3)")
if self._is_batched and lookat.ndim == 1:
lookat = lookat.expand((n_envs, 3))
if up is not None:
up = torch.as_tensor(up, dtype=gs.tc_float, device=gs.device)
if up.ndim > (1 + self._is_batched) or up.shape[-1] != 3:
gs.raise_exception(f"Up shape {up.shape} does not match (N, 3)")
if self._is_batched and up.ndim == 1:
up = up.expand((n_envs, 3))
if transform is not None:
if any(data is not None for data in (pos, lookat, up)):
gs.raise_exception("Must specify either 'transform', or ('pos', 'lookat', 'up').")
transform = torch.as_tensor(transform, dtype=gs.tc_float, device=gs.device)
if transform.ndim > (2 + self._is_batched) or transform.shape[-2:] != (4, 4):
gs.raise_exception(f"Transform shape {transform.shape} does not match (N, 4, 4)")
if self._is_batched and transform.ndim == 2:
transform = transform.expand((n_envs, 4, 4))
if self._is_batched:
for data in (transform, pos, lookat, up):
if data is not None and len(data) != n_envs:
gs.raise_exception(f"Input data inconsistent with 'envs_idx'.")
# Compute redundant quantities
if transform is None:
pos_ = pos if pos is not None else self._pos[envs_idx]
lookat_ = lookat if lookat is not None else self._lookat[envs_idx]
up_ = up if up is not None else self._up[envs_idx]
transform = gu.pos_lookat_up_to_T(pos_, lookat_, up_)
else:
pos, lookat, up = gu.T_to_pos_lookat_up(transform)
# Update camera transform
if pos is not None:
self._pos[envs_idx] = pos
if lookat is not None:
self._lookat[envs_idx] = lookat
if up is not None:
self._up[envs_idx] = up
self._transform[envs_idx] = transform
self._quat[envs_idx] = gu.R_to_quat(transform[..., :3, :3])
# Refresh rendering backend to taken into account updated camera pose
if self._raytracer is not None:
self._raytracer.update_camera(self)
if self._batch_renderer is None:
self._rasterizer.update_camera(self)
[docs]
@gs.assert_built
def start_recording(self):
"""
Start recording on the camera. After recording is started, all the rgb images rendered by `camera.render()`
will be stored, and saved to a video file when `camera.stop_recording()` is called.
"""
self._in_recording = True
[docs]
@gs.assert_built
def pause_recording(self):
"""
Pause recording on the camera. After recording is paused, the rgb images rendered by `camera.render()` will
not be stored. Recording can be resumed by calling `camera.start_recording()` again.
"""
if not self._in_recording:
gs.raise_exception("Recording not started.")
self._in_recording = False
[docs]
@gs.assert_built
def stop_recording(self, save_to_filename=None, fps=60):
"""
Stop recording on the camera. Once this is called, all the rgb images stored so far will be saved to a video
file. If `save_to_filename` is None, the video file will be saved with the name
'{caller_file_name}_cam_{camera.idx}.mp4'.
If `env_separate_rigid` in `VisOptions` is set to True, each environment will record and save a video
separately. The filenames will be identified by the indices of the environments.
Parameters
----------
save_to_filename : str, optional
Name of the output video file. If not provided, the name will be default to the name of the caller file,
with camera idx, a timestamp and '.mp4' extension.
fps : int, optional
The frames per second of the video file.
"""
if not self._in_recording:
gs.raise_exception("Recording not started.")
if save_to_filename is None:
caller_file = inspect.stack()[-1].filename
save_to_filename = (
os.path.splitext(os.path.basename(caller_file))[0]
+ f'_cam_{self.idx}_{time.strftime("%Y%m%d_%H%M%S")}.mp4'
)
if self._is_batched:
for env_idx in self._visualizer._context.rendered_envs_idx:
env_imgs = [imgs[env_idx] for imgs in self._recorded_imgs]
env_name, env_ext = os.path.splitext(save_to_filename)
gs.tools.animate(env_imgs, f"{env_name}_{env_idx}{env_ext}", fps)
else:
gs.tools.animate(self._recorded_imgs, save_to_filename, fps)
self._recorded_t_prev = -1
self._recorded_imgs.clear()
self._in_recording = False
[docs]
def get_pos(self, envs_idx=None):
"""The current position of the camera."""
assert self._env_idx is None or envs_idx is None
envs_idx = () if envs_idx is None else envs_idx
pos = self._pos[envs_idx]
if self._batch_renderer is None:
pos = pos + self._envs_offset[envs_idx]
return pos
[docs]
def get_lookat(self, envs_idx=None):
"""The current lookat point of the camera."""
assert self._env_idx is None or envs_idx is None
envs_idx = () if envs_idx is None else envs_idx
lookat = self._lookat[envs_idx]
if self._batch_renderer is None:
lookat = lookat + self._envs_offset[envs_idx]
return lookat
[docs]
def get_up(self, envs_idx=None):
"""The current up vector of the camera."""
assert self._env_idx is None or envs_idx is None
envs_idx = () if envs_idx is None else envs_idx
return self._up[envs_idx]
[docs]
def get_quat(self, envs_idx=None):
"""The current quaternion of the camera."""
assert self._env_idx is None or envs_idx is None
envs_idx = () if envs_idx is None else envs_idx
return self._quat[envs_idx]
def _repr_brief(self):
return f"{self._repr_type()}: idx: {self._idx}, pos: {self.pos}, lookat: {self.lookat}"
@property
def is_built(self):
"""Whether the camera is built."""
return self._is_built
@property
def idx(self):
"""The global integer index of the camera."""
return self._idx
@property
def uid(self):
"""The unique ID of the camera"""
return self._uid
@property
def model(self):
"""The camera model: `pinhole` or `thinlens`."""
return self._model
@property
def res(self):
"""The resolution of the camera."""
return self._res
@property
def fov(self):
"""The field of view of the camera."""
return self._fov
@property
def aperture(self):
"""The aperture of the camera."""
return self._aperture
@property
def focal_len(self):
"""The focal length for thinlens camera. Returns -1 for pinhole camera."""
tan_half_fov = np.tan(np.deg2rad(self._fov / 2))
if self.model == "thinlens":
if self._res[0] > self._res[1]:
projected_pixel_size = min(0.036 / self._res[0], 0.024 / self._res[1])
else:
projected_pixel_size = min(0.036 / self._res[1], 0.024 / self._res[0])
image_dist = self._res[1] * projected_pixel_size / (2 * tan_half_fov)
return 1.0 / (1.0 / image_dist + 1.0 / self._focus_dist)
elif self.model == "pinhole":
return self._res[0] / (2.0 * tan_half_fov)
@property
def focus_dist(self):
"""The focus distance of the camera."""
return self._focus_dist
@property
def GUI(self):
"""Whether the camera will display the rendered images in a separate window."""
return self._GUI
@GUI.setter
def GUI(self, value):
self._GUI = value
@property
def spp(self):
"""Samples per pixel of the camera."""
return self._spp
@property
def denoise(self):
"""Whether the camera will denoise the rendered image in raytracer."""
return self._denoise
@property
def near(self):
"""The near plane of the camera."""
return self._near
@property
def far(self):
"""The far plane of the camera."""
return self._far
@property
def aspect_ratio(self):
"""The aspect ratio of the camera."""
return self._aspect_ratio
@property
def env_idx(self):
"""Index of the environment bound to the camera, if any."""
return self._env_idx
@property
def debug(self):
"""Whether the camera is a debug camera."""
return self._debug
@property
def pos(self):
"""The current position of the camera for the tracked environment."""
envs_idx = self._env_idx if self._is_batched else None
return tensor_to_array(self.get_pos(envs_idx), dtype=np.float32)
@property
def lookat(self):
"""The current lookat point of the camera for the tracked environment."""
envs_idx = self._env_idx if self._is_batched else None
return tensor_to_array(self.get_lookat(envs_idx), dtype=np.float32)
@property
def up(self):
"""The current up vector of the camera for the tracked environment."""
envs_idx = self._env_idx if self._is_batched else None
return tensor_to_array(self.get_up(envs_idx), dtype=np.float32)
@property
def transform(self):
"""The current transform matrix of the camera for the tracked environment."""
envs_idx = self._env_idx if self._is_batched else None
return tensor_to_array(self.get_transform(envs_idx), dtype=np.float32)
@cached_property
def extrinsics(self):
"""The current extrinsics matrix of the camera."""
res = self.transform.copy()
res[..., :3, 1:3] *= -1
res.flags.writeable = False
return np.linalg.inv(res)
@cached_property
def intrinsics(self):
"""The current intrinsics matrix of the camera."""
res = np.array([[self.f, 0, self.cx], [0, self.f, self.cy], [0, 0, 1]])
res.flags.writeable = False
return res
@cached_property
def projection_matrix(self):
"""Return the projection matrix for this camera."""
a = self._aspect_ratio
t = np.tan(np.deg2rad(0.5 * self._fov))
n = self.near
f = self.far
res = np.array(
[
[1.0 / (a * t), 0.0, 0.0, 0.0],
[0.0, 1.0 / t, 0.0, 0.0],
[0.0, 0.0, (f + n) / (n - f), (2 * f * n) / (n - f)],
[0.0, 0.0, -1.0, 0.0],
]
)
res.flags.writeable = False
return res
@cached_property
def f(self):
return 0.5 * self._res[1] / np.tan(np.deg2rad(0.5 * self._fov))
@cached_property
def cx(self):
return 0.5 * self._res[0]
@cached_property
def cy(self):
return 0.5 * self._res[1]