# 🐛 Soft Robots ## Volumetric muscle simulation Genesis supports volumetric muscle simulation using MPM and FEM for soft robots. In the following example, we demonstrate an extremely simple soft robot with a sphere body, actuated by a sine-wave control signal. ```python import numpy as np import genesis as gs ########################## init ########################## gs.init(seed=0, precision='32', logging_level='info') ########################## create a scene ########################## scene = gs.Scene( sim_options=gs.options.SimOptions( dt = 5e-4, substeps=10, gravity=(0, 0, 0), ), viewer_options= gs.options.ViewerOptions( camera_pos=(1.5, 0, 0.8), camera_lookat=(0.0, 0.0, 0.0), camera_fov=40, ), mpm_options=gs.options.MPMOptions( lower_bound=(-1.0, -1.0, -0.2), upper_bound=( 1.0, 1.0, 1.0), ), fem_options=gs.options.FEMOptions( damping=45.0, ), vis_options=gs.options.VisOptions( show_world_frame=False, ), ) ########################## entities ########################## scene.add_entity(morph=gs.morphs.Plane()) E, nu = 3.e4, 0.45 rho = 1000. robot_mpm = scene.add_entity( morph=gs.morphs.Sphere( pos=(0.5, 0.2, 0.3), radius=0.1, ), material=gs.materials.MPM.Muscle( E=E, nu=nu, rho=rho, model='neohooken', ), ) robot_fem = scene.add_entity( morph=gs.morphs.Sphere( pos=(0.5, -0.2, 0.3), radius=0.1, ), material=gs.materials.FEM.Muscle( E=E, nu=nu, rho=rho, model='stable_neohooken', ), ) ########################## build ########################## scene.build() ########################## run ########################## scene.reset() for i in range(1000): actu = np.array([0.2 * (0.5 + np.sin(0.01 * np.pi * i))]) robot_mpm.set_actuation(actu) robot_fem.set_actuation(actu) scene.step() ``` This is what you will see: Most of the code is pretty standard compared to instantiating regular deformable entities. There are only two small differences that do the trick: * When instantiating soft robots `robot_mpm` and `robot_fem`, we use materials `gs.materials.MPM.Muscle` and `gs.materials.FEM.Muscle` respectively. * When stepping the simulation, we use `robot_mpm.set_actuation` or `robot_fem.set_actuation` to set the actuation of the muscle. By default, there is only one muscle that spans the entire robot body with the muscle direction perpendicular to the ground `[0, 0, 1]`. In the next example, we show how to simulate a worm crawling forward by setting muscle groups and directions, as shown in the following. (The full script can be found in [tutorials/advanced_worm.py](https://github.com/Genesis-Embodied-AI/Genesis/tree/main/examples/tutorials/advanced_worm.py).) ```python ########################## entities ########################## worm = scene.add_entity( morph=gs.morphs.Mesh( file='meshes/worm/worm.obj', pos=(0.3, 0.3, 0.001), scale=0.1, euler=(90, 0, 0), ), material=gs.materials.MPM.Muscle( E=5e5, nu=0.45, rho=10000., model='neohooken', n_groups=4, ), ) ########################## set muscle ########################## def set_muscle_by_pos(robot): if isinstance(robot.material, gs.materials.MPM.Muscle): pos = robot.get_state().pos n_units = robot.n_particles elif isinstance(robot.material, gs.materials.FEM.Muscle): pos = robot.get_state().pos[robot.get_el2v()].mean(1) n_units = robot.n_elements else: raise NotImplementedError pos = pos.cpu().numpy() pos_max, pos_min = pos.max(0), pos.min(0) pos_range = pos_max - pos_min lu_thresh, fh_thresh = 0.3, 0.6 muscle_group = np.zeros((n_units,), dtype=int) mask_upper = pos[:, 2] > (pos_min[2] + pos_range[2] * lu_thresh) mask_fore = pos[:, 1] < (pos_min[1] + pos_range[1] * fh_thresh) muscle_group[ mask_upper & mask_fore] = 0 # upper fore body muscle_group[ mask_upper & ~mask_fore] = 1 # upper hind body muscle_group[~mask_upper & mask_fore] = 2 # lower fore body muscle_group[~mask_upper & ~mask_fore] = 3 # lower hind body muscle_direction = np.array([[0, 1, 0]] * n_units, dtype=float) robot.set_muscle( muscle_group=muscle_group, muscle_direction=muscle_direction, ) set_muscle_by_pos(worm) ########################## run ########################## scene.reset() for i in range(1000): actu = np.array([0, 0, 0, 1. * (0.5 + np.sin(0.005 * np.pi * i))]) worm.set_actuation(actu) scene.step() ``` This is what you will see: Several things that worth noticing in this code snippet: * When specifying the material `gs.materials.MPM.Muscle`, we set an additional argument `n_groups = 4`, which means there can be at most 4 different muscles in this robot. * We can set the muscle by calling `robot.set_muscle`, which takes `muscle_group` and `muscle_direction` as inputs. Both have the same length as `n_units`, where in MPM `n_units` is the number of particles while in FEM `n_units` is the number of elements. `muscle_group` is an array of integer ranging from `0` to `n_groups - 1`, indicating which muscle group an unit of the robot body belongs to. `muscle_direction` is an array of floating-point numbers that specify vectors for muscle direction. Note that we don't do normalization and thus you may want to make sure the input `muscle_direction` is already normalized. * How we set the muscle of this worm example is simply breaking the body into four parts: upper fore, upper hind, lower fore, and lower hind body, using `lu_thresh` for thresholding between lower/upper and `fh_thresh` for thresholding between fore/hind. * Now given four muscle groups, when setting the control via `set_actuation`, the actuation input is thus an array of shape `(4,)`. ## Hybrid (rigid-and-soft) robot Another type of soft robot is using rigid-bodied inner skeleton to actuatuate soft-bodied outer skin, or more precisely speaking, hybrid robot. With both rigid-bodied and soft-bodied dynamics implemented already, Genesis also supports hybrid robot. The following example is a hybrid robot with a two-link skeleton wrapped by soft skin pushing a rigid ball. ```python import numpy as np import genesis as gs ########################## init ########################## gs.init(seed=0, precision='32', logging_level='info') ######################## create a scene ########################## scene = gs.Scene( sim_options=gs.options.SimOptions( dt=3e-3, substeps=10, ), viewer_options= gs.options.ViewerOptions( camera_pos=(1.5, 1.3, 0.5), camera_lookat=(0.0, 0.0, 0.0), camera_fov=40, ), rigid_options=gs.options.RigidOptions( gravity=(0, 0, -9.8), enable_collision=True, enable_self_collision=False, ), mpm_options=gs.options.MPMOptions( lower_bound=( 0.0, 0.0, -0.2), upper_bound=( 1.0, 1.0, 1.0), gravity=(0, 0, 0), # mimic gravity compensation enable_CPIC=True, ), vis_options=gs.options.VisOptions( show_world_frame=True, visualize_mpm_boundary=False, ), ) ########################## entities ########################## scene.add_entity(morph=gs.morphs.Plane()) robot = scene.add_entity( morph=gs.morphs.URDF( file="urdf/simple/two_link_arm.urdf", pos=(0.5, 0.5, 0.3), euler=(0.0, 0.0, 0.0), scale=0.2, fixed=True, ), material=gs.materials.Hybrid( material_rigid=gs.materials.Rigid( gravity_compensation=1., ), material_soft=gs.materials.MPM.Muscle( # to allow setting group E=1e4, nu=0.45, rho=1000., model='neohooken', ), thickness=0.05, damping=1000., func_instantiate_rigid_from_soft=None, func_instantiate_soft_from_rigid=None, func_instantiate_rigid_soft_association=None, ), ) ball = scene.add_entity( morph=gs.morphs.Sphere( pos=(0.8, 0.6, 0.1), radius=0.1, ), material=gs.materials.Rigid(rho=1000, friction=0.5), ) ########################## build ########################## scene.build() ########################## run ########################## scene.reset() for i in range(1000): dofs_ctrl = np.array([ 1. * np.sin(2 * np.pi * i * 0.001), ] * robot.n_dofs) robot.control_dofs_velocity(dofs_ctrl) scene.step() ``` This is what you will see: * You can specify hybrid robot with the material `gs.materials.Hybrid`, which consists of `gs.materials.Rigid` and `gs.materials.MPM.Muscle`. Note that only MPM is supported here and it must be the Muscle class since the hybrid material reuses internally the `muscle_group` implemented for `Muscle`. * When controlling the robot, given the actuation being from the inner rigid-bodied skeleton, there is a similar interface to rigid-bodied robot, e.g., `control_dofs_velocity`, `control_dofs_force`, `control_dofs_position`. Also, the control dimension is the same as the DoFs of the inner skeleton (in the above example, 2). * The skin is determined by the shape of the inner skeleton, where `thickness` determines the skin thickness when wrapping the skeleton. * By default, we grow skin based on the shape of the skeleton, which is specified by `morph` (in this example, the `urdf/simple/two_link_arm.urdf`). The argument `func_instantiate_soft_from_rigid` of `gs.materials.Hybrid` defines concretely how skin should grow based on the rigid-bodied `morph`. There is a default implementation `default_func_instantiate_soft_from_rigid` in [genesis/engine/entities/hybrid_entity.py](https://github.com/Genesis-Embodied-AI/Genesis/tree/main/genesis/engine/entities/hybrid_entity.py). You can also implement your own function. * When `morph` is `Mesh` instead of `URDF`, the mesh specifies the soft outer body and the inner skeleton is grown based on the skin shape. This is defined by `func_instantiate_rigid_from_soft`. There is also a default implementation `default_func_instantiate_rigid_from_soft`, which basically implements skeletonization of 3D meshes. * The argument `func_instantiate_rigid_soft_association` of `gs.materials.Hybrid` determines how each skeletal part is associated with skin. The default implementation is to find the closest particles of the soft skin to the rigid skeletal parts.